본문 바로가기

Codestates AI 부트캠프/회고

Section2 Machine Learning을 마치며!

 

1. What I Learned

이번 달 주제는 머신러닝이었다. 회귀-분류로 문제를 정의하고 그에 맞는 여러가지 모델을 배웠다. 선형 회귀, 로지스틱 회귀, 랜덤 포레스트, XG 부스트 등의 모델과 작동 원리. 그리고 각 문제에 맞는 평가지표와 하이퍼파라미터 튜닝까지.

 

지금까지 왜 내가 원하는 직무명에 '데이터 사이언티스트' 즉 '과학자'라는 워딩이 들어가는 지 궁금했는데 이제 이해하게 됐다. 자료를 정제하고 모델을 선정하고 결과를 비교하는 과정이 과학자의 실험과 닮았기 때문이다.

 

저번 달에도 그랬듯 공부량이 많아서 도전적인 하루하루였다. 하지만 공들여 데이터를 정제하는 일도, 단계를 밟으며 모델의 성능을 향상시키고 완성하는 일까지 내게는 더할나위 없이 잘 맞고 재밌었다. 이쪽 세계로 발을 들인 결정에 다시 한번 확신을 얻었다. 

 

2. What to study additionally

  • 다루지 않았던 KNN, NaiveBayes 등의 작동 원리 공부
  • 시계열 머신러닝 습득
  • 강화학습 공부